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INTRODUCTION

The performance of liquid propellant rocket engines is dependent upon many elements of

the entire system. One of the most fundamental and most critical is the performance of the

injector elements. Their characterization is an important part of the development of combustion

devices. Optical measurements within these environments have proven to be invaluable tools in

quantifying the physical environment of two phase flows. The effort reported herein involves the

measurement of drop velocity, drop size, and most importantly mass flux using Phase-Doppler

Particle Anemometry within a spray generated by a single swirl injector element operating in

atmospheric pressure conditions. The mass flux has been determined and validated by mechanical

pattemation methods and by profile integration of the mass flux.

EXPERIMENTAL METHODS

The single element injector test facility utilized during the course of the laboratory

investigations has been previously developed and described 3. A photograph of the test hardware

is shown in reference 3. The major features of the system include six pressurized accumulators

which are first filled with water and then pressurized with compressed air. These accumulators

can deliver approximately six gallons of water at constant delivery pressures up to 500 psia.

A transparent, acrylic, swirl injector element has been characterized in the present
investigation which has been previously designed to examine the internal flow environment in the

central posts of tangential-entry, swirl coaxial injector elements typical of those used in liquid

propellant rockets 2. Several such injectors have been tested and analyzed 2 for their internal

geometry and measurements were made of the axial pressure distribution, the shape of the air core

formed in the post, the velocity profile in the liquid film, and the near exit spatial mass flow

distribution of the spray cone. The H-3, 1-9 injector from this group was selected for the effort.

The injector element was calibrated and later operated at plenum stagnation pressures of 75 to 85
psig (90 to 100 psia) where the water mass flow rate was 1.1 to 1.2 lbm/s (499 to 544 gin/s).

Under these conditions the injector could be operated for approximately 50 seconds.

A one-dimensional 23 tube mechanical pattemator was used as a mass collection device in

order to compare with the Phase-Doppler Particle Anemometry mass flux profile results. The

patternator consists of 23 thin-walled, square, cross-sectioned tubes. These tubes have a nominal

outer size of 0.125 inches by 0.125 inches and square inner cross-section of 0.101 inches by 0.101

inches. During testing the tube bank was positioned in the spray at the desired measurement

position, normal to the spray. The mass of water collected from each tube was suctioned by a

vacuum pump into a column of glass collection tubes. The mass collected by each tube in the

spray is hereby recorded over a period of time which enables a mean mass distribution profile to

be determined across a section of the spray. The mass flux, m", for each tube was determined

from the water column heights using Eqn. 1:

m"= mn'° (1)
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where mh, o is the mass of water collected by each individual tube, A_ is the capture cross-

sectional area of each tube (0.1 in2), and T_ is the test duration time.

A Phase-Doppler Particle Anemometry (PDPA) Optical System was used to measure the

droplet velocities, droplet size, and mass flux. A thorough explaination of the theory,

applicability, and assessment of the PDPA can be found in references 4, 5 and 6. A schematic of

the present setupisshown in Figure 1. The system is a commercial one-dimensional system

fabricated by Aerometrics, Inc. The 514.5 nm line of an Argon-Ion 100 mW laser was aligned

into the transmitting optics where the laser beam is split, collimated with a 160 mm lens, and the

two beams are focused by a 1000 mm transmitting lens. The laser beams intersect to form fringes

which are aligned horizontally, normal to the spray. The collection optics were positioned at 30 °
off the transmission optics axis where the light scattered by the fringes is dominated by refraction

through the drop as opposed to reflection or diffraction. The collection optics consisted of a 500

mm collimating lens and a 238 mm aperture lens. This configuration enabled a droplet size range

of 47.7 l.tm to 1671 lain to be measured. The objective in using the PDPA was to assess the

effectiveness and accuracy of the PDPA system to make accurate mass flux measurements in the

dense spray. Hence, it was important in the present effort to caputre the largest drops since they

contain most of the mass. The probe cross-sectional area is corrected for drop size and it is

noted, that the largest probe cross-sectional area computed and used by the software to calculate
the volume flux, was 5.0 x 10-3 cm 2.

Figure 2 shows a schematic of the orientation and overview of the flow field. The injector

was mounted to a traversing mechanism which allowed the injector to be traversed horizontally,

vertically, and rotated in order to align the PDPA measurement volume 0aorizontal fringes) and

the mechanical patternator normal to the most dense portion of the liquid sheet breakup region

within the spray cone. The injector was rotated at an angle of 25 ° which was the experimentally

determined spray cone angle. Traverses were made at two axial locations of approximately 17

and 30 injector exit diameters (8.7 ram) from the exit of the injector.

RESULTS AND DISCUSSION

A 1 ms strobe photograph of the swirl spray with an injection pressure of 80 psig is shown

in Figure 3. At the exit of the injector a rotating, annular, cross-sectional, liquid sheet exits at a

measured mean thickness of 635 _tm and axial velocity of approximately 35 rn/s (Ref. 2). As the

liquid sheet leaves the injector body the radial momentum of the fluid induced by the tangential

entry ports at the entrance of the post causes the liquid sheet to move radially outward and

enhance the breakup of the sheet into ligaments and eventually drops. The photograph attempts

to show the evolution of the breakup process.

As indicated above, measurements of mass flux were made using the patternator and the

PDPA at axial stations of approximately 17 and 30. The objective was to verify if accurate

measurements of mass Ilux could be made. In addition the mass flux profiles were integrated in

order to verify if the total mass could be captured. If tangential symmetry is assumed, the integral

of the mass flux profile can be pertbrmed using Eqn. 2:
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m = 2_ f m"(s), s. ds (2)
s=0

where s is the axis of traversal which for the present measurements is not a true radial coordinate

as indicated in Figure 2. In order to evaluate Eqn. 2, discretization was required yielding Eqn. 3:

Q •

mrot_t = _ • sin(90- y) • 2i m" (s/+ 1,s/) • (s/2 1 - st2) (3)

where rarotat is the calibrated total mass flow rate, m" (s ÷1' s) is the mean value of the measured

mass flux between positions si÷1 and s i , and 3, is the spray cone angle of 25 °.

The raw PDPA data includes individual drop velocity and particle size. The software

calculates the statistical properties of velocity and size as well as the volume flux. Information

such as this was collected at several locations within the spray along the two traverse axes. The

maximum velocities occur in the most dense portion of the spray where most of the mass is

concentrated. The RMS velocity fluctuations range from about 30 to 50 % at both axial stations.

The maximum velocities measured were as high as 30 m/s which is less than the calculated

injector exit velocity of 35 m/s 2. The largest drops are found in the dense spray region and the

maximum individual drop sizes measured were 1670 gm. This is in agreement with the measured

mean exit liquid film thickness art he injector exit of 635 grn 2. The RMS fluctuations in the

measured drop sizes are 35 % which corresponds to the dynamic range of the PDPA detectors.

The smallest drops measured in the dense spray region were 48 Bin. Smaller drops exist;

however, were not measured because of the limited dynamic range of the detector.

As noted earlier, the present effort was focused on obtaining accurate mass flux

measurements and therefore it was necessary to capture the largest drops since they contain most

of the mass. Figures 4 and 5 show the patternator and PDPA measured mass flux profiles in

grrgs/cm 2 at both axial positions respectively. The patternator and PDPA mass flux profiles are in

agreement at L/D of 30; however, at L/D of 17 the PDPA under predicts the mass flux. This can

be explained by noting that in the PDPA method non-spherical particles are rejected. The profiles

at L/D of 17 show either the PDPA is not capturing all of the mass, because the breakup of the

liquid shear layer is incomplete, or the spray is too dense. However, at L/D of 30 the breakup is

complete and the region is comprised of discrete drops. As noted above, if the profiles are

correct, integration of the mass flux profiles over the discretized surface areas should recover the

total mass flow rate. This has been completed and the results are shown in Table 1.

Axial Position

L/D = 17

_JD = 30

• i ¸ . •

Total Mass Flow Rate

(gm/s/cm 2)

499

544

Table 1

Result of Patiernat0r

Profile Integration

(grn/s/cm z)

493

518

• Result of PDPA

Profile Integration

(gm/s/cm 2)

144
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CONCLUSIONS

The following conclusions can be drawn from the results presented:

. The maximum velocity measured by the PDPA (i.e. 30 m/s) is less than the calculated

injector exit liquid film velocity (i.e. 35 m/s).

. The maximum measured individual drop size (i.e. 1670 lain) is consistent with the

independently measured mean liquid fdm injector exit thickness (i.e. 635 llm).

o The PDPA can accurately measure mean mass flux in the discrete droplet region of a spray

as verified by the pattemator mass flux measurements and profile integration at L/D of 30.
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Figure 1 Schematicof the Optical Setup

for the Phase-Doppler Particle

Anemometry System.
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Figure 2 Overview of the Injector
Orientation and Axes of Traverse.

Figure 3 Photograph of the Swirl Spray at

a Plenum Injection Pressure of 80 psig and

Mass Flow Rate of 525 gm/s.
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Figure 4 Comparison of Mean Mass Flux
Profdes at IJD = 17 for the Pattemator and

PDPA.
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Figure 5 Comparison of Mean Mass Flux
Proftles at L/D = 30 for the Pattemator and

PDPA.
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